当前位置:看奇闻 > 奇人异事 > 手机访问:m.zhongliu365.com

数学家曼德尔布罗与漂亮的分形几何学(2)

来源:www.zhongliu365.com时间:2012-12-26奇闻指数:编辑:admin手机版


 

    美国知名科普作家詹姆斯·格莱克(James Gleick)在《混沌:开创新科学》一书中评价曼德尔布罗说,他始终是个局外人,在数学的不时髦的角落里持着非正统的看法,探索着一些并未使他受欢迎的学科,为了把文章发表出去不得不把最伟大的思想隐藏起来,主要靠着约克镇高地(IBM总部所在地)雇主的信任才得以存活。他对像经济学这样的一些领域搞过突击,然后又撤走,留下一些招惹性的想法而缺少论据充分的工作。

 曼德尔布罗非常崇拜有“数学全才”之称的亨利·庞加莱(Henri Poincare);他说,“一位极其伟大的数学家,他开创了数学的许多分支。他曾经说过他本人从不去证明复杂的定理,也不太在意这些证明,他更注重的是概念。”他还说,“跟他相比我还差得很多。我的意思是我发现的许多真相并不是纯数学推导而来,而是对数学图景的熟练掌握之后所提出的新问题而已。”

    曼德尔布罗还说过,如果把竞赛置于一切之上,如果为了阐明竞赛规则而退缩到狭隘定义的专业中去,科学就会毁灭。别人称他为“分形几何学之父”,而他却戏谑自己是“流浪汉学者”,又称自己是“特立独行者”和“按需先锋队”,徜徉于自己爱好的天地中。他一直是哈佛大学、马萨诸塞理工学院的访问教授,但1987年才在耶鲁大学数学系获得正式教职,12年后才成为终身教授,此时他已经75岁。

    曼德尔布罗投身科学事业50余年来,在许多领域做出了重要贡献,横跨数学、物理学、地学、哲学、经济学、生理学、计算机科学、天文学、情报学、信息与通讯、城市与人口、设计与艺术等学科和专业,是一位名副其实的博学家。(奇闻www.zhongliu365.com)

    2010年10月14日,曼德尔布罗在美国马萨诸塞州剑桥市因病逝世,享年85岁。法国总统尼古拉·萨科齐向曼德尔布罗家人表示哀悼,“法国对曾经接纳伯努瓦·曼德尔布罗、让他受益于最好的教育而感到骄傲”,“他的工作完全是在主流科学之外发展起来,却成为现代信息理论的基础”。国际学术界也对失去这位勇于创新的天才数学家感到悲痛。

    分形几何学的意义与应用

    分形几何学的基本思想是:客观事物具有自相似的层次结构,局部与整体在形态、功能、信息、时间、空间等方面具有统计意义上的相似性,成为自相似性。自相似性是指局部是整体成比例缩小的性质。形象地说,就是当用不同倍数的照相机拍摄研究对象时,无论放大倍数如何改变,看到的照片都是相似的,而从相片上无法判断所用的相机的倍数,即标度不变性或全息性。

    例如,一棵参天大树与它自身上的树枝及树枝上的枝杈在形状上没什么大的区别,大树与树枝这种关系,在几何形状上称之为自相似关系;我们再拿来一片树叶,仔细观察一下叶脉,它们也具备这种性质;动物也不例外,一头牛身体中的一个细胞基因记录着这头牛的全部生长信息;还有高山的表面,您无论怎样放大其局部,它都如此粗糙不平等等。这些例子在我们的身边到处可见。正如曼德尔布罗在《大自然的分形几何》一书中写道:“云朵不是球形的,山峦不是锥形的,海岸线不是圆形的,树皮不是光滑的,闪电也不是一条直线。”

    在欧氏空间中,人们习惯把空间看成三维的,平面或球面看成二维,而把直线或曲线看成一维。也可以梢加推广,认为点是零维的,还可以引入高维空间,人们通常习惯于整数的维数。然而,分形几何学认为维数也可以是分数,称其为分数维(简称分维);分维是分形的定量表征和基本参数。曼德尔布罗曾描述过一个绳球的维数:从很远的距离观察这个绳球,可看作一点(零维);从较近的距离观察,它充满了一个球形空间(三维);再近一些,就看到了绳子(一维);再向微观深入,绳子又变成了三维的柱,三维的柱又可分解成一维的纤维。

    德国知名数学家费利克斯·豪斯道夫(Felix Hausdorff)在1919年提出了连续空间的概念,也就是空间维数是可以连续变化的,它可以是整数也可以是分数,被称为豪斯道夫维数。因此,曼德尔布罗也把分形定义为豪斯道夫维数大于或等于拓扑维数的集合。

    上世纪80年代初开始的“分形热”经久不息。美国物理学大师约翰·惠勒(John Wheeler)曾说过:今后谁不熟悉分形,谁就不能被称为科学上的文化人。由此可见分形的重要性。

精彩文章:摩天大楼 非洲纳米比亚辛巴族 关东地震 非洲巨阴族

奇人奇事未解之谜世界之最奇异生物宇宙探索

本月排行